
Physical Audio Modeling
Modeling & Simulation Final Report

Karl Hiner, Ben Wilfong

April 2023

Github Repo: https://github.gatech.edu/bwilfong3/CSE6730_Team3
Video: https://mediaspace.gatech.edu/media/Mesh2Audio+-+Final+project+for+Modeling+

%26+Simulation/1_mh9qwexo/290982512

Audio samples:
https://drive.google.com/drive/folders/1wTdc4w5yPa5-ZNjtl8z-cwkA1gmOq1Jv

1

https://github.gatech.edu/bwilfong3/CSE6730_Team3
https://mediaspace.gatech.edu/media/Mesh2Audio+-+Final+project+for+Modeling+%26+Simulation/1_mh9qwexo/290982512
https://mediaspace.gatech.edu/media/Mesh2Audio+-+Final+project+for+Modeling+%26+Simulation/1_mh9qwexo/290982512
https://drive.google.com/drive/folders/1wTdc4w5yPa5-ZNjtl8z-cwkA1gmOq1Jv

Abstract: This project explores the problem of modeling synthesized sounds from cross-sections
of axisymmetric objects. In order to do this, we have implemented a finite element code to create
stiffness and mass matrices that describe the object of interest, and then use the eigenvalues and
eigenvectors of the resulting generalized eigen-problem to produce a superposition of sine waves that
mimic the sound that object would make when struck. This work improves on previous work done
by Michon et al. [9] by using a 2-D axisymmetric modeling approach to provide real-time feedback
through an intuitive graphical user interface. The following report details the system of interest, the
conceptual model, the numerical implementation, and the results of this work.

Contents

1 Project Description 2

2 Literature Review 3

3 Conceptual Model 5

3.1 Finite Element Modeling . 5

3.2 Physical Audio Modeling . 7

4 Simulation Model 8

4.1 Finite Element Modeling . 8

4.2 Physical Audio Modeling . 9

5 Validation and Verification 9

6 Experimental Results 11

7 Discussion & Conclusion 11

A Distribution of Work 14

B Finite Element Matrix Details 14

C Finite Element Stiffness Matrix Verification Details 15

C.1 Element 1 Validation . 15

C.2 Element 2 Validation . 15

C.3 Element 3 Validation . 16

C.4 Element 4 Validation . 17

C.5 Global Stiffness Validation . 17

D Finite Element Mass Matrix Verification Details 18

E Finite Element Validation 19

1 Project Description

We implement a model and application for converting a 2D and 3D meshes into dynamic physical
audio models, facilitating real-time user interaction for the application of excitation forces and

2

modification of model parameters. While our ultimate model is designed to accommodate a wide
variety of volumetric objects, our primary focus is on the specialized domain of metallic bells.

An example bell and its axisymmetric cross section are given in Figure 1. Rather than modeling
the entire 3D volume of the bell, we have elected to use the axisymmetry of the problem and
model only the cross-section shown on the right-hand side of Figure 1, which greatly reduces the
computational cost. The inputs to our model are a two-dimensional cross-section, the Young’s
Modulus of the material, the Poisson’s ratio of the material, and the density of the material.

Figure 1: System of Interest

2 Literature Review

Physical audio modeling offers many benefits compared with other digital audio synthesis tech-
niques. Physically accurate models map directly to the physical systems they approximate, making
interpretation and control intuitive. They generate audio with a natural and realistic character, and
they are highly general; a physical model for one instrument can be adapted to another with relative
ease, and complex systems can be composed and connected in straightforward ways.

However, physical audio models are also computationally expensive compared to other audio
synthesis techniques, requiring simplifications to trade off realism and physical plausibility for com-
putational tractability.

Digital waveguides [14], for example, model 1D systems such as strings or wind instruments by
iterating the 1D wave equation with an appropriately chosen wave variable (e.g., string displacement
or air pressure), modeling boundaries like plectra (picks), guitar bridges, or flute tone holes as
scattering junctions with digital audio filters designed to match their wave impedance. However,
waveguides are limited to 1D systems with low dispersion and do not lend themselves easily to

3

nonlinear interactions [3].

Finite difference schemes, finite volume methods, and other time-stepping methods are more
computationally costly but are much more general, offering nonlinear interactions, time-varying
external interaction, and straightforward extension to two and three dimensions [3].

The technique of modal synthesis uses a source-filter model to decompose physical audio systems
into an excitation signal that drives a parallel filter bank implementing the transfer functions of
resonant modes in the physical system [13]. The resonant modes can be computed directly from
a 3D model, and the source-filter audio model can be implemented compactly and efficiently with
classical digital audio filter techniques. This approach offers a compromise between the generality
and physical accuracy of finite difference schemes while still allowing for real-time sound synthesis
in computationally constrained settings.

Modal synthesis is the approach we will investigate in our project. Specifically, we aim to convert
a volumetric mesh into a physical audio model. 3D volumetric meshes are ubiquitous in graphics. The
ability to interpret existing volumetric meshes as physically plausible audio generators would be of
great use for digital audiovisual media production, such as in video games or movies. Additionally,
the modal synthesis paradigm supports extracting audio responses from external impulse forces,
enabling estimation of the audio response from object interactions, as well as real-time instrument
control in the music production context.

We will model our initial implementation on the work of Michon, Martin & Smith in their
Mesh2Faust project [9]. In this approach, a bell is modeled using the finite element method using a
3-D tetrahedral mesh. The physics of the system is modeled using the linear deformation equation
with no damping,

Mẍ(t)+Kx(t) = f(t)

where x(t) is the vector of displacements of each node, M and K are the finite element mass
and stiffness matrices respectively, and f(t) is the force vector. It is in this modeling step that
we hope to greatly reduce the computational cost by modeling only a 2d cross-section of a bell
using axisymmetric triangular elements [10]. Assume that solutions to this system have the form
ui(t) = Uie

jωit where Ui ∈ R2n and ωi ∈ R. Substituting this assumed solution into the linear
deformation equation yields the generalized eigenvalue problem

KΛ = MUΛ,

where Λ is a diagonal matrix of eigenvalues and U is a modal matrix containing the eigenvectors Ui

of the linear deformation equation. For this step, we intend to implement the FEAST [15] algorithm
to find eigenpairs quickly.

Using the transformation x = Uq, the linear deformation equation can be decoupled giving

q̈+Λq = UTf .

The solutions of the homogenous system q̈+Λq = 0 are given by a set of modes

qi = ai sin(2πfi + θi),

where ai is the amplitude of excitation, fi is its frequency, and θi is a phase shift, assumed to be
zero. The ai depend on the object and the excitement location, and the fi are given by

fi =
1

2π

√
λi

for each eigenvalue λi. These outputs are used as inputs to the modal analysis mentioned previously,
yielding a profile for a synthesized sound.

We hope to extend and improve on the existing work of Mesh2Faust in the following ways:

4

• Improve slow compile times from mesh to modal parameters. Mesh2Faust takes about 15
minutes to convert a mesh with ∼30k faces on a “regular laptop” [8].

• Mesh2Faust is a command line application and provides no control over generating the 3D
mesh itself. We aim to create a visual interface with controls for mesh generation & material
properties, as well as parameters of the modal audio generation, with a focus on bell modeling.

• Mesh2Faust utilizes full 3D finite element analysis. We will investigate using 2d axisymmetric
elements to take advantage of the inherent radial symmetry in bells. This will dramatically
reduce the number of vertices, the computational cost, and the size of the gains matrix required
to post-process the finite element results. We expect this simplification will allow for near real-
time workflows when combined with GPU acceleration. However, imposing radial symmetry
may produce less realism in the final audio result, and we plan to investigate this tradeoff.

• In addition, Mesh2Faust relies on Intel’s MKL library[1], which is closed-source and only
compatible with Intel processors. As part of our contribution, we plan to support running on
non-Intel processors, such as ARM.

3 Conceptual Model

Our conceptual model is based on that presented by Michon et. al.[9]. The overall structure of this
approach is given in Figure 2. We split our model into two parts: 1) physical audio modeling and
2) finite element modeling. The details of each part follow.

3.1 Finite Element Modeling

At its core, the finite element method is one of many approaches to numerically solving differen-
tial equations. For our purposes, we will be using 2d, axisymmetric, triangular elements that are
formulated to solve the linear elasticity equations in cylindrical coordinates:

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

1

r
(σrr − σθθ) + Fr = ρ

∂2ur

∂t2
,

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+

2

r
σrθ + Fθ = ρ

∂2uθ

∂t2
,

∂σrz

∂r
+

1

r

∂σθz

∂θ
+

∂σzz

∂z
+

1

r
σrz + Fz = ρ

∂2uz

∂t2
.

In these equations, σij denotes a stress on the ith face of a differential volume in the jth direction,
Fi denotes an external force in the ith direction, and ui denotes displacement in the ith direction.
In a static finite element analysis, the displacements ui are found by solving a system of equations

Kx = F

where K is a matrix of stuffiness coefficients that relate the nodal displacements contained in x to
the external forces contained in F . In dynamic finite element analysis with damping ignored, the
ODE

Mẍ+Kx = F (1)

is advanced from an initial condition x0. In this equation, K and F are as described earlier, and M
is a matrix that takes element mass into account. Given that we are interested in finding frequencies
and shapes of vibrations, which are time-dependent in nature, our modeling will utilize the latter of
these two approaches.

5

Figure 2: Program Structure [9]

6

To see the value of the eigenvalues and eigvenvectors assume that solutions to this system (1)
have the form ui(t) = Uie

jωit where Ui ∈ R2n and ωi ∈ R. Substituting this assumed solution into
(1) yields the generalized eigenvalue problem

KΛ = MUΛ,

where Λ is a diagonal matrix of eigenvalues and U is a modal matrix containing the eigenvectors
Ui of the linear deformation equation.

Using the transformation x = Uq, the linear deformation equation can be decoupled giving

q̈+Λq = UTf .

The solutions of the homogenous system q̈+Λq = 0 are given by a set of modes

qi = ai sin(2πfi + θi),

where ai is the amplitude of excitation, fi is its frequency, and θi is a phase shift, assumed to be
zero. The ai depend on the object and the excitement location, and the fi are given by

fi =
1

2π

√
λi

for each eigenvalue λi. These outputs are used as inputs to the modal analysis, yielding a profile for
a synthesized sound.

3.2 Physical Audio Modeling

As explained in the literature review, we find the set of modes,

qi = ai sin(2πfi + θi),

where ai is the amplitude of excitation, fi is its frequency, and θi is a phase shift, assumed to be
zero. The ai depend on the object and the excitement location, and the fi are given by

fi =
1

2π

√
λi

for each eigenvalue λi.

Each mode is implemented as an exponentially decaying sine wave, with its own frequency, gain,
and resonance duration (T60). These sine waves are implemented as resonant bandpass filters,
allowing any signal to excite them. Specifically, the mode filters are implemented as a parallel bank
of biquad filters with transfer function

H(z) = g
1− z2

1 + α1z−1 + α2z−2
,

with

α1 = −2τ cosω

α2 = τ2

ω =
2πf

fs

τ = 0.001
1

t60 ,

where g, f , and t60 are the mode gain, frequency, and T60, respectively.

7

4 Simulation Model

The simulation of our conceptual model is naturally separated into two parts, finite element modeling
and physical audio modeling. Details of each are as follows:

4.1 Finite Element Modeling

The purpose of the finite element code is to populate the stiffnes and mass matrices of the system
of interest. Finite element stiffness matrices are generally computed using an energy minimization
approach [6]. For a general element with displacement function matrix B and stress-strain tensor
D, the element stiffness matrix can be computed by evaluating

Ke =

∫
Ω

BTDBdΩ (2)

over some domain Ω. For our purposes we use a linear mapping from (r, z) space to (s, t) space in
which each triangular element is mapped as if it were a square, with two nodes sharing the same
coordinate, to the unit square [−1, 1] × [−1, 1]. This mapping, along with the use of axisymmetry,
allows for (2) to be written as

Ke = 2πrc

∫ 1

−1

∫ 1

−1

BTDB||J ||dsdt

where rc is the center of mass of the element. This formulation allows for a 9-point Gaussian
Quadrature rule to be used to approximate the integral. For axisymmetric problems, the matrix D
[2] that relates the stress {σr σz σθ τrz}T to the strains {εr εz εθ γrz}T is given by

σr

σz

σθ

τrz

 =
E

(1 + ν)(1− 2ν)

1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 (1− 2ν)/2

︸ ︷︷ ︸

D

εr
εz
εθ
γrz

 ,

where E and ν are the Young’s Modulus and Poisson’s ratio of the material being modeled. Details
regarding the matrices B and J are provided in Appendix B.

The mass matrix [6] is given by the integral

Me =

∫
Ω

ρNTNdΩ (3)

over some domain Ω where N is the matrix of shape functions as described in Appendix B. Again,
as a result of the linear mapping used to go from (r, z) space to (s, t) space and the assumption that
density is uniform, (3) can be rewritten as

Me = 2πrcρAe

∫ 1

−1

∫ 1

−1

NTNdsdt

where ρ is the density of the material, rc is the centroid of the element, and Ae is the area of the
element. Global mass and stiffness matrices are then created via a superposition of element mass
and stiffness matrices.

8

Figure 3: Stiffness Matrix Verification Case

4.2 Physical Audio Modeling

5 Validation and Verification

In order to verify the model, the stiffness and mass matrices produced by the finite element method
must first be verified against trustworthy, exact calculations. For this, we use the results of [2]. This
presentation presents the finite element test problem shown in Figure 3 and provides element and
global stiffness matrices through exact calculations. This test case features four connected element
stiffness matrices that share five nodes. Table 1 gives the maximum error, defined by the vector
infinity norm

e = 100×

∣∣∣∣∣
∣∣∣∣∣KC

ij −KE
ij

KE
ij

∣∣∣∣∣
∣∣∣∣∣
∞

where KC
i,j references the stiffness matrix produced by our code and KE

ij references the exact data
provided by [2]. Note that exact agreement is not to be expected, as our implementation utilizes
approximate Gaussian Quadrature rather than exact integration to compute the stiffness matrices.
The resulting relative errors however are small, and shown to be insignificant in the validation step.
Details regarding the exact and computed stiffness matrices are provided in Appendix C. The mass
matrix is shown in Appendix D to match the expected result exactly, within machine precision. This
is due to the Gaussian Quadrature rule used being sufficient to evaluate the polynomials formed in
the product NTN exactly. In order to validate the finite element model, we utilize the thin walled
pressure vessel case shown in Figure 4 with known theoretical solution. The hoop stress calculated
by our finite element implementation agrees with a relative error of only 0.15%. This verifies that
our implementation yields physical results.

9

Table 1: Stiffness Matrix Relative Error

Element 1 2 3 4 Global
e 2.86% 1.13% 2.86% 3.73% 3.73%

Figure 4: Validationwe Problem

10

6 Experimental Results

This section discusses the audio model validation. For a discussion of the finite element validation,
see appendix A.

Although we would like to have completed more rigorous validation of our final audio models,
our validation results are currently limited to a qualitative analysis by simply listening to the results
and comparing them with their real-world counterparts.

Additionally, we qualitatively verified that, for the 3D modeling case, the results of our gener-
ated Faust DSP programs produced nearly identical to the baseline that we reproduced following
mesh2faust. [8]

We have uploaded audio samples demonstrating both our 3D and 2D axisymmetric methods at
[5].

These samples include audio generated by using a shaped pulse of filtered white noise (emulating
a hammer strike) to excite the resonating biquad filters corresponding to the modes associated with
the struck vertices in our interactive ”Mesh2Audio” application.

The samples include simulations of the following:

• Three kinds of bells

• A wine glass

• The standard ”Utah teapot” 3D model [16]

• A ”hand drum” generated by extruding the 2D profile shown in Fig. 5 into the 3D mesh shown
in Fig. 6

All 3D models except the teapot were generated by extruding the correspondingly named 2D
bell cross-sections that can be found in the app/res directory of the repository linked in the title
page.

As demonstrated in our project video, in addition to the near-instantanious generation of ax-
isymmetric audio models, we also successfully reduced the computation time needed to:

• Generate tetrahedral volumetric meshes from triangular meshes: We consistently see speedups
on the order of 10x compared to the mesh2faust implementation by using the tetgen[12] library
instead of Vega[7].

• Solve the sparse eigenvalue problem to estimate the resonant modes: We often see up to 2x
speedup in estimating eigenvalues through the use of the Spectra[11] library, and by using
better configuration settings and reducing memory usage.

7 Discussion & Conclusion

We successfully achieved our project goals, implementing both 3D and 2D-axisymmetric physical
audio models of several 3D objects, such as bells, wine glasses, non-symmetric 3D volumetric meshes
from external sources, and many varieties of custom-generated axisymmmetric 3D models.

In addition, through the computational improvements discussed in the results section, and by
implementing a custom mesh viewing and generating library, we achieved our main goal of enabling
a rapid interactive workflow for generating realistic physical audio models.

11

Figure 5: ”Hand drum” 2D profile

Figure 6: ”Hand drum” 3D triangular mesh

We are also in the process of contributing much of our work to the open-source Faust project [4].

Although our 2D-axisymmetric physical audio modeling method is novel (to our knowledge) and
generates results of moderate fidelity and realism, there is still a good deal of examination and work
needed to make the quality useful enough for serious use beyond creative musical applications.

Narrowing the gap between our 2D and 3D models while maintaining the same order of com-
putation time would enable rapid prototyping in scientific research, and speed up development in
creative digital media applications such as animation, video games, Foley, and music production.

12

References

[1] Accelerate Fast Math with Intel® oneAPI Math Kernel Library. url: https://www.intel.
com/content/www/us/en/developer/tools/oneapi/onemkl.html (visited on 03/14/2023).

[2] Mohamed Arafa. Finite Element Method Chapter 9 Axisymmetric Elements. 2017. url: http:
/ / site . iugaza . edu . ps / marafa / files / FEM - Chapter - 9 - 2017 - 18 . pdf (visited on
04/24/2023).

[3] Stefan Bilbao et al. “The NESS Project: Physical Modeling, Algorithms and Sound Synthesis”.
In: Computer Music Journal 43 (Nov. 2019). doi: 10.1162/comj_a_00516.

[4] Faust - Functional programming language for signal processing and sound synthesis. 2023. url:
https://github.com/grame-cncm/faust (visited on 02/04/2023).

[5] Karl Hiner and Ben Wilfong. Mesh2Audio audio samples. url: https://drive.google.com/
drive/folders/1wTdc4w5yPa5-ZNjtl8z-cwkA1gmOq1Jv.

[6] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analy-
sis. Dover Civil and Mechanical Engineering. Dover Publications, 2012. isbn: 978-0-486-13502-
1. url: https://books.google.com/books?id=cHH2n_qBK0IC.

[7] Daniel Schroeder: Jernej Barbič Fun Shing Sin. Vega FEM Library. 2012. url: http://www.
jernejbarbic.com/vega (visited on 02/04/2023).

[8] Romain Michon. Romain Michon - Faust Tutorials. url: https://ccrma.stanford.edu/

~rmichon/faustTutorials/#converting-a-mesh-to-a-faust-physical-model (visited
on 03/10/2023).

[9] Romain Michon, Sara R Martin, and Julius O Smith. “MESH2FAUST: A Modal Physical
Model Generator for the Faust Programming Language -Application to Bell Modeling”. In:
(Mar. 2021).

[10] Woolley Mitchell and Fisher. Formulation and Experimental Verification of an Axisymmetric
Finite-Element Structural Analvsis. 1971. url: https://nvlpubs.nist.gov/nistpubs/jres/
75C/jresv75Cn3-4p155_A1b.pdf.

[11] Yixuan Qiu. Spectra - C++ Library For Large Scale Eigenvalue Problem. 2023. url: https:
//spectralib.org/ (visited on 02/04/2023).

[12] Hang Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”. In: ACM Trans-
actions on Mathematical Software 41.2 (Feb. 2015), 11:1–11:36. issn: 0098-3500. doi: 10.
1145/2629697. url: https://doi.org/10.1145/2629697 (visited on 04/26/2023).

[13] Julius O. Smith. “Physical Audio Signal Processing”. In: (accessed March 2023). online book,
2010 edition. url: https://ccrma.stanford.edu/~jos/pasp/Modal_Representation.html.

[14] Julius O. Smith. “Physical Modeling Using Digital Waveguides”. In: Computer Music Journal
16.4 (1992), pp. 74–91. issn: 01489267, 15315169. url: http://www.jstor.org/stable/
3680470 (visited on 03/10/2023).

[15] Ping Tak Peter Tang and Eric Polizzi. FEAST as a Subspace Iteration Eigensolver Accelerated
by Approximate Spectral Projection. 2013. url: https://arxiv.org/abs/1302.0432.

[16] Utah Teapot. url: https://graphics.cs.utah.edu/teapot/.

13

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
http://site.iugaza.edu.ps/marafa/files/FEM-Chapter-9-2017-18.pdf
http://site.iugaza.edu.ps/marafa/files/FEM-Chapter-9-2017-18.pdf
https://doi.org/10.1162/comj_a_00516
https://github.com/grame-cncm/faust
https://drive.google.com/drive/folders/1wTdc4w5yPa5-ZNjtl8z-cwkA1gmOq1Jv
https://drive.google.com/drive/folders/1wTdc4w5yPa5-ZNjtl8z-cwkA1gmOq1Jv
https://books.google.com/books?id=cHH2n_qBK0IC
http://www.jernejbarbic.com/vega
http://www.jernejbarbic.com/vega
https://ccrma.stanford.edu/~rmichon/faustTutorials/#converting-a-mesh-to-a-faust-physical-model
https://ccrma.stanford.edu/~rmichon/faustTutorials/#converting-a-mesh-to-a-faust-physical-model
https://nvlpubs.nist.gov/nistpubs/jres/75C/jresv75Cn3-4p155_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/75C/jresv75Cn3-4p155_A1b.pdf
https://spectralib.org/
https://spectralib.org/
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://ccrma.stanford.edu/~jos/pasp/Modal_Representation.html
http://www.jstor.org/stable/3680470
http://www.jstor.org/stable/3680470
https://arxiv.org/abs/1302.0432
https://graphics.cs.utah.edu/teapot/

A Distribution of Work

The modeling is naturally split into two components. In the first, the finite element method is used
to produce global mass and stiffness matrices which is being completed by Ben. These outputs
are then used as inputs to the physical audio modeling, which Karl is completing along with the
application interface.

B Finite Element Matrix Details

For a triangular finite element, the shape functions that map to the unit square are given by

N1 =
1

4
(1 + s)(1 + t),

N2 =
1

4
(1− s)(1 + t),

N3 =
1

2
(1− t).

The matrix N that relates the (r, z) coordinates to the (u, v) coordinates is given by

{
r(s, t)
z(s, t)

}
=

1

4

[
(1 + s)(1 + t) 0 (1 − s)(1 + t) 0 2(1 − t) 0

0 (1 + s)(1 + t) 0 (1 − s)(1 + t) 0 2(1 − t)

]
︸ ︷︷ ︸

N

r1(x, y)
z1(x, y)
r2(x, y)
z2(x, y)
r3(x, y)
z3(x, y)

.

The associated Jacobian matrix J that describes the mapping form (r, z) space to (s, t) space is
given by

J =

∂(r(s,t))
∂s

∂(z(s,t))
∂s

∂(r(s,t))
∂t

∂(z(s,t))
∂t

 =
1

4

 (r1 − r2)(1 + t) (z1− z2)(1 + t)

(r1 − r2)s+ r1 + r2 − 2r3 (z1 − z2)s+ z1 + z2 − 2z3

.
The derivatives of the shape functions in (x, t) space are then given by∂N1

∂x

∂N1

∂y

 = J−1

∂N1

∂s

∂N1

∂t

 =

 z3−z2
r1(z3−z2)+r2(z1−z3)+r3(z2−z1)

r2−r3
r1(z3−z2)+r2(z1−z3)+r3(z2−z2)

∂N2

∂x

∂N2

∂y

 = J−1

∂N2

∂s

∂N2

∂t

 =

 z1−z3
r1(z3−z3)+r2(z1−z3)+r3(z2−z1)

r1−r3
r1(z2−z3)+r2(z3−z1)+r3(z1−z2)

∂N3

∂x

∂N3

∂y

 = J−1

∂N3

∂s

∂N3

∂t

 =

 z1−z2
r1(z2−z3)+r2(z3−z1)+r3(z1−z2)

r1−r2
r1(z3−z2)+r2(z1−z3)+r3(z2−z2)

These derivatives are then used to populate the matrix B

 εr(s, t)
εz(s, t)

εθ(s, t)γrz

 =

∂N1

∂x 0 ∂N2

∂x 0 ∂N3

∂x 0

0 ∂N1

∂y 0 ∂N2

∂y 0 ∂N3

∂y

N1

r 0 N2

r 0 N3

r 0

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂

∂N3
x

︸ ︷︷ ︸

B

r1
z1
r2
z2
r3
z3

that relates the nodal displacments in the (r, z) space to strains in the (s, t) space

14

C Finite Element Stiffness Matrix Verification Details

The error matrix E is given by

E = 100× |KC
x −KE

x |
|KE

x |
,

where KC
x is the x element matrix from our implementation and KE

x is the x element matrix from
the reference [2]. Elements of E that result in NaN due to zeros in KE

x are replaced with zeros. The
maximum relative error in an element stiffness matrix is 3.73% and the maximum relative error in
the global stiffness matrix is 3.73%. Exact agreement is not to be expected as our implementation
uses a 9-point 2D Gaussian Quadrature rule to compute element stiffness matrices while [2] uses
exact integration. These results serve to verify both our element stiffness matrix calculation as well
as our global assembly routine. The results for each matrix of interest follow.

C.1 Element 1 Validation

Exact result from [2].

KE
1 = 106

54.46 29.45 −31.63 2.26 −29.37 −31.71
29.45 61.17 −11.33 33.98 −31.72 −95.15
−31.63 −11.33 72.59 −38.52 −20.31 49.84
2.26 33.98 −38.52 61.17 22.66 −95.15

−29.37 −31.72 −20.31 22.66 56.72 9.06
−31.74 −95.15 49.84 −95.15 9.06 190.31

lb

in.

Approximate result from our implementation.

KC
1 = 106

55.63 29.45 −32.22 2.27 −29.96 −31.72
29.45 61.17 −11.33 33.98 −31.72 −95.15
−32.22 −11.33 73.76 −38.51 −20.89 49.84
2.27 33.98 −38.51 61.17 22.66 −95.15

−29.96 −31.72 −20.89 22.66 57.90 9.06
−31.71 −95.15 49.84 −95.15 9.06 190.31

lb

in.

Element-wise relative error.

E1 =

2.15 0 1.87 0.44 2.01 0.03
0 0 0 0 0 0

1.87 0 1.61 0.03 2.86 0
0.44 0 0.03 0 0 0
2.01 0 2.86 0 2.08 0
0.03 0 0 0 0 0

%

The maximum relative error is 2.86%.

C.2 Element 2 Validation

Exact result from [2].

KE
2 = 106

85.75 −46.07 52.52 12.84 −118.92 33.23
−46.07 74.77 −12.84 −41.54 45.32 −33.23
52.52 −12.84 85.74 46.07 −118.92 −33.23
12.84 −41.54 46.07 74.77 −45.32 −33.23

−118.92 45.32 −118.92 −45.32 216.41 0
33.23 −33.23 −33.23 −33.23 0 66.46

lb

in.

15

Approximate result from our implementation.

KC
2 = 106

86.71 −46.07 52.04 12.84 −119.39 33.23
−46.07 74.76 −12.84 −41.54 45.31 −33.23
52.04 −12.84 86.71 46.07 −119.39 −33.23
12.84 −41.54 46.07 74.76 −45.31 −33.23

−119.39 45.31 −119.39 −45.31 217.36 0.00
33.23 −33.23 −33.23 −33.23 0.00 66.46

lb

in.

Element-wise relative error.

E2 =

1.12 0 0.91 0 0.40 0
0 0.01 0 0 0.02 0

0.91 0 1.13 0 0.40 0
0 0 0 0.01 0.02 0

0.40 0.02 0.40 0.02 0.44 0
0 0 0 0 0 0

%

The maximum relative error is 1.13%.

C.3 Element 3 Validation

Exact result from [2].

KE
3 = 106

72.58 38.52 −31.63 11.33 −20.31 −49.84
38.52 61.17 −2.26 33.98 −22.66 −95.15
−31.63 −2.26 54.46 −29.45 −29.37 31.72
11.33 33.98 −29.45 61.17 31.72 −95.15
−20.31 −22.66 −29.37 31.72 56.72 −9.06
−49.84 −99.15 31.72 −95.15 −9.06 190.31

lb

in.

Approximate result from our implementation.

KC
3 = 106

73.76 38.51 −32.22 11.33 −20.89 −49.84
38.51 61.17 −2.27 33.98 −22.66 −95.15
−32.22 −2.27 55.63 −29.45 −29.96 31.72
11.33 33.98 −29.45 61.17 31.72 −95.15
−20.89 −22.66 −29.96 31.72 57.90 −9.06
−49.84 −95.15 31.72 −95.15 −9.06 190.31

lb

in.

Element-wise relative error.

E3 =

1.63 0.03 1.87 0 2.86 0
0.03 0 0.44 0 0 0
1.87 0.44 2.15 0 2.01 0
0 0 0 0 0 0

2.86 0 2.01 0 2.08 0
0 0 0 0 0 0

%

The maximum relative error is 2.86%.

16

C.4 Element 4 Validation

Exact result from [2].

KE
4 = 106

41.53 −21.90 20.39 0.75 −66.45 21.14
−21.90 47.57 −0.75 −26.43 36.24 −21.14
20.39 −0.75 41.53 21.90 −66.45 −21.14
0.75 −26.43 21.90 47.57 −36.24 −21.14

−66.45 36.24 −66.45 −36.24 169.14 0
21.14 −21.14 −21.14 −21.14 0 42.28

lb

in.

Approximate result from our implementation.

KC
4 = 106

43.05 −21.90 19.63 0.76 −67.21 21.15
−21.90 47.58 −0.76 −26.43 36.25 −21.15
19.63 −0.76 43.05 21.90 −67.21 −21.15
0.76 −26.43 21.90 47.58 −36.25 −21.15

−67.21 36.25 −67.21 −36.25 170.67 0.00
21.15 −21.15 −21.15 −21.15 0.00 42.29

lb

in.

Element-wise relative error.

E4 =

3.66 0 3.73 1.33 1.14 0.05
0 0.02 1.33 0 0.03 0.05

3.73 1.33 3.66 0 1.14 0.05
1.33 0 0 0.02 0.03 0.05
1.14 0.03 1.14 0.03 0.90 0
0.05 0.05 0.05 0.05 0 0.02

%

The maximum relative error is 3.73%.

C.5 Global Stiffness Validation

Exact result from [2].

KE
G = 106

95.99 51.35 −31.63 2.26 0 0 20.39 −0.75 −95.82 −52.86
51.35 108.74 −11.33 33.98 0 0 0.75 −26.43 −67.96 −116.3
−31.63 −11.33 158.34 −84.49 52.52 12.84 0 0 −139.2 83.07
2.26 33.98 −84.59 135.94 −12.84 −41.54 0 0 67.98 −128.4
0 0 52.52 −12.84 158.33 84.59 −31.63 11.33 −139.2 −83.07
0 0 12.84 −41.54 84.59 135.94 −2.26 33.98 −67.98 −128.4

20.39 0.75 0 0 −31.63 −2.26 95.99 −51.35 −95.82 52.86
−0.75 −26.43 0 0 11.33 33.98 −51.35 108.74 67.96 −116.3
−95.82 −67.96 −139.2 67.98 −139.2 −67.98 −95.82 67.96 498.99 0
−52.86 −116.3 83.07 −128.4 −83.07 −128.4 52.86 −116.3 0 489.36

lb

in.

Approximate result from our implementation.

K
C
G = 10

6

98.68 51.35 −32.22 2.27 0.00 0.00 19.63 −0.76 −97.17 −52.86
51.35 108.75 −11.33 33.98 0.00 0.00 0.76 −26.43 −67.97 −116.30
−32.22 −11.33 160.47 −84.58 52.04 12.84 0.00 0.00 −140.28 83.07
2.27 33.98 −84.58 135.93 −12.84 −41.54 0.00 0.00 67.97 −128.38
0.00 0.00 52.04 −12.84 160.47 84.58 −32.22 11.33 −140.28 −83.07
0.00 0.00 12.84 −41.54 84.58 135.93 −2.27 33.98 −67.97 −128.38
19.63 0.76 0.00 0.00 −32.22 −2.27 98.68 −51.35 −97.17 52.86
−0.76 −26.43 0.00 0.00 11.33 33.98 −51.35 108.75 67.97 −116.30
−97.17 −67.97 −140.28 67.97 −140.28 −67.97 −97.17 67.97 503.83 0.00
−52.86 −116.30 83.07 −128.38 −83.07 −128.38 52.86 −116.30 0.00 489.36

lb

in.

17

Element-wise relative error.

EG =

2.80 0 1.87 0.44 0 0 3.73 1.33 1.41 0
0 0.01 0 0 0 0 1.33 0 0.01 0

1.87 0 1.35 0.11 0.91 0 0 0 0.78 0
0.44 0 0.01 0.01 0 0 0 0 0.01 0.02
0 0 0.91 0 1.35 0.01 1.87 0 0.78 0
0 0 0 0 0.01 0.01 0.44 0 0.01 0.02

3.73 1.33 0 0 1.87 0.44 2.80 0 1.41 0
1.33 0 0 0 0 0 0 0.01 0.01 0
1.41 0.01 0.78 0.01 0.78 0.01 1.41 0.01 0.97 0
00 0 0.02 0 0.02 0 0 0 0

%

The maximum relative error is 3.73%.

D Finite Element Mass Matrix Verification Details

Consider element 4 in the given validation problem. Given the matrix N as described in Appendix
B, the exact mass matrix, with ρ = 1000, is given by

2000πrcA

∫ 1

−1

∫ 1

−1

NTNdtdt

Exact evaluation of this integral in Mathematica yeilds

ME
4 = 2000π

(
11

12

)
(0.0625)

4
9 0 2

9 0 1
3 0

0 4
9 0 2

9 0 1
3

2
9 0 4

9 0 1
3 0

0 2
9 0 4

9 0 1
3

1
3 0 1

3 0 4
3 0

0 1
3 0 1

3 0 4
3

 ,

≈

159.99 0 79.99 0 119.99 0

0 159.99 0 79.99 0 119.99
79.99 0 159.99 0 119.99 0
0 79.99 0 159.99 0 119.99

119.99 0 119.99 0 479.97 0
0 119.99 0 119.99 0 479.97

 .

The mass matrix produced by our implementation is

MC
4 =

159.99 0.00 79.99 0.00 119.99 0.00
0.00 159.99 0.00 79.99 0.00 119.99
79.99 0.00 159.99 0.00 119.99 0.00
0.00 79.99 0.00 159.99 0.00 119.99
119.99 0.00 119.99 0.00 479.97 0.00
0.00 119.99 0.00 119.99 0.00 479.97

 .

Quick inspection verifies that the mass matrix produced by our code is identitcal to the exact mass
matrix within machine precision. This is because the 9 point Gaussian Quadrature rule is sufficiently
high order to evaluate the polynomials resulting from the product NTN exactly.

18

Figure 7: Constrained System

E Finite Element Validation

Figure 7 shows the constrained system that will be used to compute hoop stress. The rollers on the
top and bottom are against rigid boundaries and allow motion in the horizontal, but not vertical
direction. The constrained system of equations that results from this problem is

106

1635.87 −458.75 0 450.50 −1640.96 −910.00
−458.75 1667.59 467.12 0 −1662.11 925.11

0 467.12 1667.59 −458.75 −1662.11 −925.11
450.50 0 −458.75 1635.87 −1640.96 910.00

−1640.96 −1662.11 −1662.11 −1640.96 6606.67 0
−910.00 925.11 −925.11 910.00 0 6606.41

u1

u2

u3

u4

u5

v5

= π(10)(0.25)

100
0
0
100
0
0

.

Solution of this system yields the r and z displacements

{u1 u1 u3 u4 u5 v5}T = 1× 10−3{1.2415, 1.2415, 1.2415, 1.2415, 1.2415, 0}T .

Collecting the displacements for element 4 gives

{u1 v1 u4 v4 u5 v5}T = 1× 10−3{1.2415, 0, 1.2415, 0, 1.2415, 0}T .

19

Right multiplying the displacements by the matrix B yields the strains.

εr
εz
εθ
τrz

 = 1× 10−3

−4 0 −4 0 8 0
0 4 0 −4 0 0

0.0784 0 0.00996 0 0.0112 0
4 −4 −4 −4 0 8

1.2415
0

1.2415
0

1.2415
0

= 1× 10−5

−5.4612

0
12.3562

0

Right multiplying this result by the stress strain matrix D yields the stresses.

σr

σz

σθ

γrz

 = 1× 107

4.0385 1.7308 1.7308 0
1.7308 4.0385 1.7308 0
1.7308 1.7308 4.0385 0

0 0 0 1.1538

εr
εz
εθ
τrz

 =

−66.9
1193
4044
0

psi.

The hoop stress is given by σθ and is equal to 4044 psi using this model. The theoretical value for
hoop stress is given by the formula

σθ =
PDm

2t

where P is the pressure, Dm is the average of the inner and outer diameters, and t is the wall
thickness. For this problem, the theoretical hoop stress is

σθ =
(100)(20.25)

(2)(0.25)
= 4050psi.

The relative error between the result of our finite element code with this theoretical value is 0.15%,
validating this modeling approach.

20

	Project Description
	Literature Review
	Conceptual Model
	Finite Element Modeling
	Physical Audio Modeling

	Simulation Model
	Finite Element Modeling
	Physical Audio Modeling

	Validation and Verification
	Experimental Results
	Discussion & Conclusion
	Distribution of Work
	Finite Element Matrix Details
	Finite Element Stiffness Matrix Verification Details
	Element 1 Validation
	Element 2 Validation
	Element 3 Validation
	Element 4 Validation
	Global Stiffness Validation

	Finite Element Mass Matrix Verification Details
	Finite Element Validation

